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Abstract Restoring and preserving the world's forests are promising natural pathways to mitigate some
aspects of climate change. In addition to regulating atmospheric carbon dioxide concentrations, forests modify
surface and near‐surface air temperatures through biophysical processes. In the eastern United States (EUS),
widespread reforestation during the 20th century coincided with an anomalous lack of warming, raising
questions about reforestation's contribution to local cooling and climate mitigation. Using new cross‐scale
approaches and multiple independent sources of data, we uncovered links between reforestation and the
response of both surface and air temperature in the EUS. Ground‐ and satellite‐based observations showed that
EUS forests cool the land surface by 1–2°C annually compared to nearby grasslands and croplands, with the
strongest cooling effect during midday in the growing season, when cooling is 2–5°C. Young forests (20–
40 years) have the strongest cooling effect on surface temperature. Surface cooling extends to the near‐surface
air, with forests reducing midday air temperature by up to 1°C compared to nearby non‐forests. Analyses of
historical land cover and air temperature trends showed that the cooling benefits of reforestation extend across
the landscape. Locations surrounded by reforestation were up to 1°C cooler than neighboring locations that did
not undergo land cover change, and areas dominated by regrowing forests were associated with cooling
temperature trends in much of the EUS. Our work indicates reforestation contributed to the historically slow
pace of warming in the EUS, underscoring reforestation's potential as a local climate adaptation strategy in
temperate regions.

Plain Language Summary A century of eastern US reforestation has had a cooling effect that helps
to explain a lack of regional warming in the 20th century, which stands in contrast to warming trends across the
rest of North America during the same period. Our study shows that forests across much of the eastern United
States have a substantial adaptive cooling benefit for surface temperature, and for the first time, we demonstrate
that this benefit also extends to near‐surface air temperature. Therefore, reforestation in temperate zones could
provide a complementary set of benefits: mitigating climate change by removing carbon dioxide from the
atmosphere, while also helping with adaptation to rising temperatures by cooling surface and air temperatures
over large areas.

1. Introduction
Drastic reductions in anthropogenic greenhouse gas emissions are necessary to address climate change. Nature‐
based Climate Solutions (NbCS), such as reforestation, have the potential to provide additional mitigation
through atmospheric CO2 removal (Nolan et al., 2021; Novick, Metzger, et al., 2022; Novick, Williams, et al.,
2022; Seddon et al., 2020), but will only be effective if they are accompanied by economy‐wide decarbonization.
Changes to land cover and management, which are central to the implementation of NbCS, can alter local tem-
perature through changes to the surface energy balance (Anderson et al., 2011). If these biophysical impacts are
beneficial, then someNbCS could serve as a tool for local adaptation in addition to global‐scale climatemitigation.

Reforestation—the NbCS with the highest CO2 mitigation potential (Griscom et al., 2017)—can increase or
decrease local surface temperature (Ts) depending on the balance of competing mechanisms. In the tropics, forests
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evaporate substantially more water than grasslands, which promotes cooling by using energy that would other-
wise heat the surface (Anderson et al., 2011; Williams et al., 2021). Conversely, reforestation in boreal climates
tends to warm the surface due to both reductions in albedo and the influences of surface roughness on nighttime
temperatures (Lee et al., 2011). In the temperate zone, surface cooling from increased evaporative and sensible
heat fluxes usually outweighs albedo‐driven warming, such that temperate forests have lower Ts compared to non‐
forested ecosystems (Anderson et al., 2011; Bright et al., 2017; Burakowski et al., 2018; Windisch et al., 2021;
Zhang et al., 2020).

Although Ts is relevant to many ecological processes (Farella et al., 2022), the near‐surface air temperature (Ta) is
an equally important target for climate adaptation (Novick & Katul, 2020; Winckler et al., 2019) because changes
in Ta can have far‐reaching effects, as biophysical impacts on air temperature can be advected across the land-
scape (Winckler et al., 2019). While land‐cover change affects Ts and Ta differently (Baldocchi & Ma, 2013;
Helbig et al., 2021; Novick & Katul, 2020; Winckler et al., 2019), quantifying the impacts of land‐cover change
on Ta has historically been challenging. Near‐surface air temperature cannot be sensed remotely, and its variation
with height makes it difficult to interpret over differing land cover types (Novick & Katul, 2020; Winckler
et al., 2019). Most data‐driven studies investigating biophysical impacts on both Ts and Ta typically compare
locations with similar macroclimates but different land cover, which captures the direct, local effects of land‐
cover change on Ts and Ta (e.g., Baldocchi & Ma, 2013; Bright et al., 2017; Juang et al., 2007; Winckler
et al., 2019; Windisch et al., 2021; Zhang et al., 2020). However, this approach can overlook indirect, non‐local
effects (Baldocchi & Ma, 2013) related to advection or changes in downstream cloud cover due to increased
upstream evapotranspiration. This study adopts a novel combination of approaches to evaluate the impacts of
reforestation on both Ts and Ta, exploring both local and larger‐scale effects across various spatial and temporal
scales.

The Eastern United States (EUS) has undergone extensive reforestation over the last century (Figures 1a and 1b;
Ramankutty et al., 2010), providing a unique opportunity to investigate the biophysical impacts of large‐scale
land cover change. By large scales, we mean scales that are sufficiently large so that the atmospheric bound-
ary layer is in local equilibrium with the land‐surface. This equilibrium may be achieved at scales much larger
(i.e., order of magnitude) than the daytime boundary layer height (order of 1 km). Additionally, the absence of
warming over a large portion of the EUS during this period (Figure 1c; Meehl et al., 2012) raises the question of
whether reforestation has dampened the historic pace of warming in the region. To address this question, we
employ multiple independent data sources to evaluate both local and non‐local effects of reforestation on Ts and
Ta. Our approach involves: (a) comparing locations with similar climates but different land cover using both
satellite and in situ observations to determine the local effects of reforestation on Ts and Ta, (b) exploring gradients
in Ts across ecosystem boundaries to uncover the potential local extent of such effects, and (c) analyzing historical
weather station, air temperature, and land‐cover data to identify long‐term links between Ta and forest cover
trends at landscape and regional scales. Through this comprehensive approach, we aim to gain insight into the
extent to which EUS reforestation has influenced historical rates of regional warming and the potential of
temperate zone reforestation for climate adaptation.

1.1. Historic Land Cover and Climate Trends in the Region

Before European settlement, forests occupied most of the land area in the EUS, with an uneven‐aged stand
structure sustained by selective harvest (Novick, Jo, et al., 2022; Ramankutty et al., 2010). However, from the
late 18th to early 20th century, forest cover in the EUS dramatically decreased due to harvesting for timber and
clearing for agriculture, resulting in forest losses exceeding 90% in some locations (Carman, 2013; Hall
et al., 2002; Houghton & Hackler, 2000). By 1930, widespread land clearing had largely stopped, and forest
cover began to increase with the abandonment of marginal agricultural fields and active reforestation efforts
(Carman, 2013; Hall et al., 2002; Houghton & Hackler, 2000; Ramankutty et al., 2010, and see Figure 1d).
Since 1900, millions of hectares of forest have been added in the northeastern, southeastern, and midwestern
US (Figure 1b, and Carman, 2013; Hall et al., 2002; Wear & Greis, 2012), mostly through the conversion of
crop and pastureland to deciduous forests, or to pine plantations providing softwood timber in some parts of the
southeastern US (Wear & Greis, 2012). Many forests in the region are now 50–100 years old (Figure 1a, Figure
S1 in Supporting Information S1), although frequent harvest of pine plantations suppresses stand age in the
Southeast.
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This century of EUS reforestation coincides with an anomalous lack of regional warming, sometimes referred to
as a “warming hole” (Figure 1; Mascioli et al., 2017; Meehl et al., 2012; Z. Pan et al., 2004; Partridge et al., 2018;
Tosca et al., 2017), especially in the Southeast. While most land areas worldwide warmed during the twentieth
century, much of the EUS experienced minor cooling, from − 0.2°C to − 0.8°C per 50 years (Figure 1c). Proposed
explanations for this cooling include internal climate variability (Mascioli et al., 2017; Meehl et al., 2012),
anthropogenic aerosols (Tosca et al., 2017), agricultural intensification (Mueller et al., 2016), and increasing
precipitation (Z. Pan et al., 2004). However, mechanistic attribution remains elusive (Mascioli et al., 2017;
Partridge et al., 2018). The warming hole extends across a large area, predominantly affecting the Eastern and
Southeastern US (Figure 1), rather than being confined solely to the Midwest. Previous studies, such as Mueller
et al. (2016), have identified local cooling effects on temperature extremes in the Midwest due to agricultural
intensification. However, these localized effects on temperature extremes do not fully correspond with the
persistent and widespread trends in mean temperatures observed throughout the broader region of the warming
hole. Despite the established potential of reforestation to affect local temperature, the impacts of regional
reforestation over the past century have not been thoroughly evaluated for their contribution to the “warming
hole” in the EUS.

2. Materials and Methods
To evaluate the influence of EUS reforestation on historical warming rates and assess the potential of temperate‐
zone reforestation as a climate adaptation strategy, we integrated several independent data sources, adopting
methods that encompass a range of spatial and temporal scales. Our approaches (outlined in Figure 2) are
organized across two axes: biophysical versus historical and local versus regional. In broad terms, our
investigation:

1. Analyzes satellite and in situ flux tower observations to quantify the local potential impact of forests, and by
extension, reforestation on Ts. We accomplish this analysis by comparing co‐located ecosystems with similar

Figure 1. The Southeastern United States' warming hole' and corresponding forest status. (a) Forest age estimates (1 km) as of 2019 calculated from forest age data from
the North American Carbon Program. (b) Land conversion between agricultural land and forests from 1938 to 1992 calculated from 1 km FORE‐SCE backcasting grids
from the US Land Cover Trends project. The bounding box indicates the study area, and details on data sources are provided in the methods. (c) Trend in temperature
change from 1900 to 2010 (∆Ta, °C/50 years) calculated using a season‐trend model applied to 0.5° Ta grids from University of Delaware monthly climatologies
provided by the NOAA. (d) Historical photo of 15‐person planting crew on 05/09/1932 in Tucker County, West Virginia. Original photo at the Forest Service Office in
Elinks, WV. Obtained from https://www.loc.gov/pictures/resource/hhh.wv0307.photos.041150p/.
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climates but different land cover (i.e., paired sites), and). We also utilize a method that normalizes the local Ts
time series to account for changes in macro‐scale air temperature, enabling us to isolate the land cover effect.

2. Investigates the extent to which changes in Ts extend to near‐surface air temperatures at local scales, including
across ecosystem boundaries. These analyses leverage eddy‐covariance flux data collected at meteorological
towers, as well as gradients in satellite‐derived Ts across forest‐grassland transitions. These approaches help us
estimate the potential magnitude and spatial extent of the biophysical effects of reforestation.

3. Integrates historical weather station, climate reanalysis, and land‐cover data to trace long‐term links between
Ta and forest cover at both the local and regional scales. This process involves analyzing the long‐term trends
in Ta anomalies and determining correlations between forest age and long‐term Ta trends.

2.1. Overview of the Relevant Temperature Metrics

Land surface (or skin) temperature (Ts) is commonly used to assess the impacts of land‐cover change and is
observable from both flux towers and remote sensing platforms. In terrestrial ecosystems, Ts represents the
temperature of the uppermost layer of vegetation, reflecting the outcome of the interactive effects of radiative
transfer, leaf energy balance, eco‐physiological controls on stomatal opening and closure, and aerodynamics. A
summary of the temperature metrics employed in this study can be found in Table 1.

Ts is mechanistically connected to near‐surface Ta through standard boundary layer theory for stratified turbulent
flows. In vegetated systems, a thin layer of air called the roughness sublayer lies between the vegetation and the
so‐called surface layer (i.e., the layer where the log‐law for the mean velocity and mean air temperature profiles
hold in near‐neutral conditions). For comparative (and conventional) purposes, near‐surface Ta is generally
measured (and modeled) at a height of 2 m above the surface, but profiles of Ta are influenced by canopy structural

Figure 2. Conceptual representation of the methodological approaches employed in this study. The diagram is divided into
four quadrants to differentiate local and regional scales and biophysical and historical contexts. Each quadrant outlines the
associated methods and their purpose. The methodologies span a broad range of space (local to regional) and time (diurnal to
long‐term historical trends) scales and enriches biophysical analyses (energy‐radiation balance combined with physiological
and aerodynamic approaches) with empirical or data‐driven approaches.

Table 1
Summary and Brief Description of the Relevant Temperature Metrics Used in This Study

Temperature metric Description

Ts; surface temperature Temperature at the land surface

Ta; air temperature Near‐surface air temperature

Textrap; extrapolated air temperature Air temperature extrapolated into the surface layer.

Taero; aerodynamic temperature Air temperature within the upper reaches of the canopy

Ta,Daymet; Daymet air temperature Reference air temperature, not influenced by variability in land cover
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effects within the roughness sublayer. In short‐stature ecosystems such as grasslands and croplands, the roughness
sublayer is typically 1–2 m thick, such that flux tower measurements of Ta are typically made in the surface layer.
However, above forests with heights of 10 m or more, the roughness sublayer is much thicker (12–50 m), such that
tower Ta indicates the mean air temperature within the roughness sublayer, not the surface layer (Novick &
Katul, 2020). Thus, comparing Ta observations across forested and non‐forested ecosystems is fraught with
potential bias linked to canopy structural effects and measurement height despite the use of a “reference” height of
2 m. To overcome this limitation, we focus on two proxies for Ta that are less impacted by structure effects on the
near‐surface Ta profile and can therefore be inferred from eddy covariance sensible heat flux tower data, as
detailed by Novick & Katul, 2020. The first proxy is the aerodynamic temperature (Taero), which represents the air
temperature within the upper reaches of the canopy. The second proxy is the air temperature extrapolated upwards
into the lower reach of the surface layer (Textrap).

At the regional scale evaluating the impacts of land cover on Ts requires a strategy to control for background
variation in macroclimate. Here, the difference between remotely sensed Ts and gridded Ta was evaluated, with
the latter provided by the Daymet (Thornton et al., 2016) product (Ta,Daymet). Remotely sensed surface temper-
ature is frequently termed “LST” (Land Surface Temperature), but we use Ts here for consistency with the other
temperature metrics. Daymet interpolates data from meteorological weather stations, which are typically located
over short grass surfaces; therefore, it is viewed here as a “reference” Ta that is not influenced by variability in
land cover. Tower‐derived estimates of Ts and Ta were also normalized by the DAYMET Ta product, which
allowed us to leverage information from all flux towers in the study region, and not just those from co‐located
paired sites.

2.2. Local Biophysical Analysis

2.2.1. Paired Site Flux Tower Analyses

To mechanistically understand reforestation effects on Ts over the diurnal cycle (i.e., Figures 3c and 3d), a paired
site approach (e.g., Lee et al., 2011; Zhang et al., 2020) is used, relying on observations from six forest‐grassland
site pairs in the study region. The site pairs are in Arkansas, North Carolina (3 pairs), Indiana, and NewHampshire
(Table S1 in Supporting Information S1), and each paired set is separated by∼30 km or less. Site descriptions and
details on eddy covariance data processing are provided elsewhere (Zhang et al., 2020). Briefly, all data were
quality‐controlled and gap‐filled using community‐accepted standards embedded in the REddyProc processing
tool (Wutzler et al., 2018). The Ts data were inferred from the outgoing longwave radiation using the Stefan‐
Boltzmann law, with emissivity estimated as an empirical function of albedo following an established
approach (Juang et al., 2007). The attribution of changes in Ts to relevant mechanisms (i.e., variation in sensible
vs. latent heat flux) was accomplished through a Taylor‐series expansion of the site‐level energy balance equation,
as described elsewhere (Zhang et al., 2020). In this study, these prior results are aggregated across the site pairs.

The approach to estimate Taero and Textrap is described elsewhere (Novick & Katul, 2020). Briefly, Taero is
determined by first quantifying the mean ratio between Ts and the tower‐measured Ta when the measured sensible
heat flux is near zero, implying that Ta and Taero should be in equilibrium. The determination of tower‐measured
Ta was performed for each hour of the day at each site separately for the peak of the growing season (June–
September) and the dormant season (November‐March) and was then used to estimate Taero from the observed Ts
for every hourly or half‐hourly observation period. The Textrap was then calculated assuming the stability‐
corrected logarithmic profiles from Monin‐Obukhov Similarity Theory (Monin & Obukhov, 1954) hold.
Those calculations are forced with the estimated Taero and an estimate for the roughness length for heat that varies
as a function of measured friction velocity as well as the momentum roughness length that is presumed constant
for fully rough conditions (Novick & Katul, 2020). Here, results are shown for the temperature extrapolated into
the first 10 m of the surface layer after conceptually “flattening” the ecosystems by replacing them with a rough
surface characterized by two roughness heights: one for momentum absorption and one for heat transfer (see
Novick & Katul, 2020 for details and code). This manuscript extends the results presented in Novick and
Katul (2020) to the full set of paired sites in Table S1 in Supporting Information S1, noting that Novick and Katul
only evaluate the results from the Duke Forest sites in North Carolina.

The Ta data presented in Figure 3 are mean air temperature data measured from a Ta/RH probe (such as the
HMP35 or HMP45C, Vaisala) above the canopy, usually at or near the height of the eddy covariance systems (see
Table S1 in Supporting Information S1).
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Figure 3.
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2.2.2. Broader Synthesis of Flux Tower Sites

The 58 flux towers used in the broader synthesis (Figures 4a–4d) include the paired tower sites, as well as data sets
acquired from the AmeriFlux network (Novick et al., 2018). Specifically included are towers installed and
operated by the U.S. National Science Foundation's National Ecological Observatory Network (Metzger

Figure 3. A forest surface cooling effect is evident in both satellite and flux tower (a)–(b) observations (c), (d). (a) Average difference between daily ∼1:30 p.m. surface
temperature (Ts) and daily maximum air temperature (Ta,Daymet) for 2003–2018 for forests (top row) and combined grasslands and croplands (“other,” second row).
Negative values indicate cooler surface than air temperature (surface cooling) and positive values indicate warmer surface air temperature. (b) The seasonal cycle of Ts–
Ta,Daymet for forests (blue), grasslands (yellow), and croplands (orange) for the study region (bolded lines), with latitude ranges indicated by faint dashed lines. (c),
(d) Diurnal time series of the difference between forest and grassland Ts (blue), Taero (black), Textrap (gray), and tower‐measured Ta (yellow) for six eddy covariance site
pairs (Table S1 in Supporting Information S1) for the growing season (c) and the dormant season (d).

Figure 4. Extension of surface cooling to the near‐surface air. (a–d) Difference in tower‐measured or derived temperature metrics and reference Ta,Daymet. Each boxplot
shows the monthly midday growing season site‐level means, with forested ecosystems split by canopy height (≤20 m or >20 m). Horizontal lines indicate the median,
boxes indicate the interquartile range, whiskers indicate the data range (=1.5 times the interquartile range), and the symbols “+” indicate outliers. Letters indicate
significant differences between groups evaluated using a two‐sample t‐test at a significance level of p= 0.05. Note the y‐axis range varies between panels. Each panel is
informed by data from 13 grass towers, 19 cropland towers, 10 towers in forests <20 m tall, and 16 towers in forests >20 m tall. (E) Horizontal profiles (“transects”) of
Ts across the forest:cropland boundary. Values of ΔTs (sampled every 10 m) are relative to the temperature at the forest:cropland boundary. Negative values of ΔTs
indicate lower temperatures than at the boundary, and positive values of ΔTs indicate higher temperatures than at the boundary. Points left of the zero‐distance line
indicate forest (blue), and points right of the zero‐distance line indicate agricultural croplands (orange). The blue and orange lines indicate a hyperbolic tangent function
fit to the pooled transect data.
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et al., 2019). The network data were limited to those that adopt a CC‐BY‐4.0 data use license. We first down-
loaded all available site‐years from the network, excluding wetlands and irrigated croplands within the study
region. Some sites and site‐years were excluded due to missing information about radiative fluxes that are
required to derive or calculate the temperature metrics. The towers retained for this analysis are described in Table
S2 in Supporting Information S1. The approaches used to determine Ts, Taero, and Textrap for the broader flux
synthesis are the same as those described in Section 2.2.1, with the exception that the AmeriFlux data were not
gap‐filled; rather, data were filtered to exclude those collected under very stable conditions in which turbulence
generation is suppressed by buoyancy forces, and to exclude excessively large anomalous observation of sensible
heat flux (i.e., >1,000 W/m2). For the purposes of this paper, croplands managed as corn/soy rotations were
treated as separate sites for corn and soy years. Estimates of canopy height and measurement height are required to
calculate Taero and Textrap. For most towers, they are available from the AmeriFlux Biological, Ancillary
Disturbance, and Metadata (BADM) database. In cases where they were not available from the BADM, they were
extracted from published studies. In rare cases, a “best” guess was made based on known information about the
canopy type or from site photos.

To synthesize information from this much broader set of flux towers, it is necessary to adjust for the influence of
background variation in macro‐climate, so the land cover impacts can be isolated. Toward this end, we specif-
ically evaluated the difference between the tower‐derived temperature metrics and daily maximum Ta estimates
from the gridded 1 km Daymet product (Thornton et al., 2016), referred to as Ts–Ta. During the growing season,
vegetated surfaces typically have higher surface temperature than air temperature, and thus a positive Ts–Ta
(Mildrexler et al., 2011; Novick & Barnes, 2023). We anticipate a reduced Ts–Ta difference in forests due to their
increased transpiration rates due to non‐forests, especially at midday when transpiration peaks. This reduced
difference reflects the impact of transpiration on sensible heat fluxes and consequently on Ts. To the extent that
surface cooling extends to the near‐surface air temperature at local scales, we also expect the difference between
Ts and Taero and Textrap to be lower for forests than grasslands.

2.3. Regional Biophysical Analysis

2.3.1. Differences in Ts–Ta by Land Cover

To compare relative surface cooling between different types of land cover on a regional scale, we used a remote
sensing approach based on Ts retrievals from theModerate Imaging Resolution Spectroradiometer (MODIS;Wan
et al., 2015). These Ts retrievals were adjusted for variation in macroclimate using daily maximum Ta estimates
from Daymet (Thornton et al., 2016). The MODIS Land Surface Temperature/Emissivity Daily Product
(MYD11A1v6.1) has a spatial resolution of 1 km. The timing of the Aqua MODIS overpass (∼1:30 p.m. local
time) generally corresponds to the timing of daily maximum Ts estimated from tower measurements (Figure S2 in
Supporting Information S1). Thus, to evaluate spatial variability in the difference between remotely sensed Ts, we
normalized for macro‐scale climate variability by subtracting the daily maximum Ta,Daymet from MODIS Ts.

The average Ts–Ta,Daymet for each 1 km pixel in the study area was obtained for each month from 2002 to 2018.
The data presented in Figures 3a and 3b are the average monthly Ts–Ta,Daymet for the full time‐series. The land
cover type for each 1 kmMODIS pixel was determined using the U.S. Geological Survey North American Land‐
Cover Characteristics 1 km grid‐spacing data set, created by the National Center for Earth Resources Observation
and Science (EROS) as part of the Global Land Cover Characterization Project (EROS, 2017). This data set,
derived from 1 km Advanced Very High‐Resolution Radiometer data collected between 1992 and 1993, follows
the methodologies described in Loveland et al. (1999). There were relatively few pixels classified as grassland, so
we combined croplands and grasslands for the spatial Ts–Ta, Daymet maps in Figure 3a (see also Figures S3–S5 in
Supporting Information S1).

2.3.2. Land Surface Temperature Across Forest/Agriculture Boundaries

The National Land Cover Database (NLCD) land cover data set for 2016 (Dewitz, 2019) was used to identify
areas with adjacent forest‐agriculture boundaries with a continuous extent of land cover on either side of the
boundary. Transects were created across boundaries in the east/west direction at a∼90° angle. The transects were
approximately 1 km long (i.e., commensurate with the boundary layer height), with points every 10 m. In total, 44
transects were created in the study area (Figure S6 in Supporting Information S1). We then extracted Ts values
from mid‐summer clear‐sky scenes, all of which were from summer 2018, from the Landsat Provisional Surface
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Temperature Product (Cook, 2014; Cook et al., 2014). Only one Ts spatial profile was extracted for each transect,
even if multiple images were available. The spatial resolution of Landsat imagery is 30 m, so the 10 m transects
include several points within the same pixel. A smooth transition suggests that biophysical feedbacks on Ts are
likely linked to Ta through advection and the formation of an internal boundary layer (Hsieh & Katul, 2009), since
the surface itself is not mixed. For the lines in Figure 4e, we used a hyperbolic tangent function fit to each side of
the transects (forest and agriculture). Distances were scaled from—π to π for fitting, then back‐transformed for
plotting.

2.4. Local Historical Analysis

2.4.1. Impacts of Reforestation on Air Temperature Trends

To investigate the impact of local land‐cover change on long‐term air temperature trends, we used monthly air
temperature data from 398 United States Historical Climate Network (USHCN) meteorological stations. Mete-
orological stations, which were relatively evenly distributed across the study area (Figure S7 in Supporting In-
formation S1), allow us to associate locations with their land cover type compared to gridded temperature data.
We evaluated the effects of land cover on annual temperature trends from 1900 to 2010 by focusing on both
maximum temperatures during the growing season (June, July, August) and annual average temperatures. We did
not conduct any interpolation of missing values.

We classified the weather stations based on the predominant land cover within a 500 m circular buffer sur-
rounding each station, using 250 m FORE‐SCE (FOREcasting SCEnarios of Land‐use Change) backcasting grids
from the US Land Cover Trends project (Sohl et al., 2007). This buffer size was chosen after preliminary
investigation that suggested the cooler surface Ts of forests could influence Ta of nearby non‐forest up to this
range. This early assessment was subsequently refined and is presented in Figure 4e. A sensitivity analysis of the
influence of different buffer sizes on temperature trends (from 100 to 1,200 m) supported the choice of a 500 m
buffer, which optimally balanced capturing the impacts of reforestation on air temperature with minimizing
confounding effects of unrelated processes (Figure S8 in Supporting Information S1).

The classification was based on three time points within the range of available data (annual from 1938 to 1992),
1938, 1965, and 1992. The intermediate year, 1965, helped exclude sites that had undergone multiple con-
versions throughout the 20th century. Pixels were categorized as reforestation areas (change from agriculture to
forest) under two conditions: (a) if they were agricultural in 1938, converted to forest cover by 1965, and
remained forested in 1992; or (b) they were agricultural in both 1938 and 1965, and then transitioned to forest
by 1992. The areas predominantly surrounded by agriculture‐to‐forest conversion within 500 m of the weather
stations were defined as “reforest” sites. Here, “predominant” land cover change refers to the land cover type
with the greatest cumulative area, determined by summing the weights of each land cover type within the 500‐
m buffer. Out of the 398 USHCN stations, 132 were predominantly surrounded by forest, 196 by agriculture,
and 22 by reforestation. The remaining 48 sites were excluded due to multiple land cover transitions or
deforestation in the 20th century.

To explore the impacts of reforestation on air temperature trends, we compared USHCN sites predominantly
surrounded by reforestation to sites where the land cover remained stable as either agriculture or forest (“non‐
reforest”) within a 50 km radius of the “reforested” site. For each year, we calculated the temperature difference
between the reforest site and non‐reforest site (or sites) within the 50 km buffer. This approach builds upon the
paired‐site flux tower analyses described in Section 2.2.1 by extending our understanding of the effects of
reforestation on surface temperature to near‐surface air temperature, covering a much longer period (back to the
early 20th century), and including many more site “pairs.” Our comparison of neighboring reforested and non‐
reforested site pairs included analysis of both growing‐season maximum temperatures and average annual
temperatures. We excluded sites that had more than 5 years of missing data from 1900 to 2010. We had a total of
22 reforest sites and 44 non‐reforest sites within 50 km of the reforest sites, resulting in 44 comparisons for annual
average data and 42 comparisons for growing season data. The lower number of growing season comparisons is
due to missing data for two sites. The reforest sites had a median of two non‐reforest sites within a 50 km radius.
We based the 50 km radius on a previous study that showed changes in maximum air temperature up to 50 km
away from the site of land cover change (Cohn et al., 2019).
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2.5. Regional Historical Analysis

2.5.1. Forest Age and Land‐Cover Change Analyses

Monthly Ta timeseries with a spatial resolution of 0.5° were obtained from the University of Delaware Air
Temperature & Precipitation Data set (Willmott & Matsuura, 2015) provided by the National Oceanic and At-
mospheric Administration's Oceanic and Atmospheric Research Earth System Research Laboratory Physical
Sciences Division (NOAA/OAR/ESRL PSD), in Boulder, Colorado, USA, from https://psl.noaa.gov. The grid-
ded data are interpolated weather station data (Willmott & Matsuura, 1995), primarily from GHCN2 (Global
Historical Climatology Network) observations and the GSOD (Global Surface Summary of Day) archive.
Monthly mean air temperature from V4.01 of the University of Delaware Air Temperature & Precipitation Data
set was used to assess observed long‐term changes in Ta across the continental United States. Per‐pixel tem-
perature change in Ta was estimated using a season‐trend model (function “STM”) in the “greenbrown” package
(Forkel & Wutzler, 2015) for R (R Core Team, 2020). The season‐trend model in “greenbrown” is based on the
additive decomposition model described elsewhere (Verbesselt et al., 2010, 2012). Harmonic and linear terms are
used to model seasonal variation and trend, respectively, effectively “detrending” the time series in a single step
(Verbesselt et al., 2012).

To assess forest age, we obtained continental forest age maps from the North American Carbon Program (NACP),
produced for the year 2006 (Y. Pan et al., 2012). Data were updated to provide forest ages for 2019 by adding
13 years to all forest ages. This approach assumes that all forests continued to regrow and were not cut between
2006 (when the product was produced) and 2019. Although there are certainly locations for which this assumption
will not hold, they generally represent a small fraction of the land surface and are mostly contained in the
southeastern US where pine plantations are routinely harvested and replanted (Carman, 2013; Figure S1 in
Supporting Information S1). Furthermore, this method does not account for disturbances such as fires or insect
infestations that could have affected stand age. Nonetheless, the low standard deviations of forest ages—
corresponding to the 2006 age map and typically around 10 years (Figure S1C in Supporting Information S1)
—suggest a disturbance regime with limited spatial heterogeneity. Recent studies corroborate that forest loss in
this region is predominantly not due to fires (Hansen et al., 2013; Tyukavina et al., 2022; vanWees et al., 2021). In
the 20th century, fire frequency in the Eastern United States was substantially reduced when compared to fre-
quencies before European settlement (Nowacki & Abrams, 2008).

To assess change in forest status (Figure 1b), land‐cover change between 1938 and 1992 was calculated from
250 m FORE‐SCE backcasting grids described in Section 2.4.1. Pixels were coded based on their land cover
(cropland or forest), and per‐pixel change was calculated between 1938 and 1992. To exclude sites that had
undergone multiple conversions in the 20th century, an intermediate year, 1965, was also used. Pixels were
classified into three categories: reforestation (change from cropland to forest), deforestation (forest to cropland),
or “no change” (land cover type was consistent in 1938, 1965, and 1992).

2.5.2. Exploring the Links Between Forest Age and Air Temperature Change

To further investigate the influence of reforestation with a focus on the warming hole, we examined the relation
between forest age and recent growing season trends in Ta at the regional scale (Figure 5d). To align the recent
“snapshot” of forest age with Ta, we compared the 1 kmNACP‐derived forest age maps with recent trends (1970–
2017) in Ta from the University of Delaware climatologies (Willmott & Matsuura, 2015). We used the season‐
trend approach described in Section 2.5.1 to estimate the slope of trends in annual Ta time‐series from 1970 to
2017 (Figure 5d). The slope of the temperature change from 1970 to 2017, ∆Ta, was calculated for each pixel, and
forest age data were aggregated to the coarser 0.5‐degree scale of the Ta data (Figure S1B in Supporting Infor-
mation S1) using a mode function, “modal,” in the “raster” R package (Hijmans, 2021), and then resampled using
nearest neighbor interpolation. Then, we calculated focal correlations between aggregated forest age (Figure S1B
in Supporting Information S1) and temperature trends, specifically, a moving window correlation between ∆Ta
from 1970‐present and forest age in a 5 × 5 window using the “raster correlation” function in the “SpatialEco” R
package (Evans, 2021).

We note that although gridded daily microscale (1 km) Ta products such as Daymet should be relatively insen-
sitive to local impacts of land cover on Ta (Figure S9 in Supporting Information S1), the fingerprint of refor-
estation may be detectable from coarser yearly mesoscale Ta estimates at 0.5‐degree resolution. Observational and
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Figure 5.
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modeling studies support regional‐scale impacts of land cover change on mesoscale Ta (Bonan, 2001; Mahmood
et al., 2014), providing further justification for our approach.

3. Results
3.1. Effects of Land Cover on Ts: Local and Regional Biophysical Analysis

Across the study area, the difference between Ts and the Ta,Daymet was more negative for forests than grasslands
and croplands most of the time (Figure 3). Since the Ta, Daymet normalizes for macro‐scale temperature variability,
this result implies that forest surfaces are cooler than the surfaces of nearby grasslands and croplands by the same
amount. The effect was most pronounced during the growing season, when forests were cooler than non‐forests
by 0.6–2.5°C (Figures 3a and 3b), with smaller reductions observed in spring and fall.

Next, we leveraged rich surface energy balance information from eddy covariance flux towers, beginning with six
co‐located (“paired”) forest and grassland sites in the study region (Table S1 in Supporting Information S1; Zhang
et al., 2020). Across these paired sites, forest Ts was 4–5°C cooler, on average, than nearby grasslands during
midday periods (Figures 3c and 3d), driven primarily by enhanced evapotranspiration in summer and enhanced
sensible heat flux in winter that outweighed albedo‐driven warming effects in the darker forests (Zhang
et al., 2020).

Although the paired‐site approach is well established for understanding the biophysical impacts of land‐cover
change (Zhang et al., 2020), only a handful of forest‐grassland flux tower pairs exist. To expand the scope of
inference, we synthesized Ts observations from 58 Ameriflux EC tower sites across the EUS, again correcting
for macro‐scale climate variability with Ta,Daymet (Table S2 in Supporting Information S1). The results
revealed widespread daytime surface cooling in forests compared to non‐forests (Figure 4a). Throughout the
growing season, the mean difference between the tower‐derived Ts and the reference Ta,Daymet was 5.7°C
lower for tall (>20 m) forests compared to grasslands, and 4.6°C lower for short (<20 m) forests relative to
grasslands (Figure 4a). When comparing forests to croplands, the differences were less pronounced, though
tall (>20 m) forests were still relatively cooler than croplands. Specifically, Ts (Figure 4a) was 8.1 ± 3.4 for
grasslands, 4.1 ± 2.2 for croplands, 3.5 ± 2.1 for short forests, and 2.4 ± 1.3 for tall forests (all values are
mean ± SD).

3.2. Effects of Land Cover on Near‐Surface Ta: Local and Regional Biophysical Analysis

For the surface cooling to extend beyond the stand‐scale and thus contribute to the warming hole, changes in Ts
must translate to changes in near‐surface Ta.

We adopted several new or emerging approaches to quantify the extent to which the forest cooling effects on Ts
extend to Ta. First, we harnessed flux tower data to estimate metrics of Ta that are less sensitive to canopy effects
(Novick & Katul, 2020): Taero and Textrap (Table 1). In the paired sites and across the regional network of flux
towers, the midday growing season Taero and Textrap were cooler for forests than for grasslands (Figures 3d, 3e, and
4a–4d).

Consistent with expectations, forests had the strongest cooling effect on surface temperatures (Figure 4a), and
smaller effects on air temperatures (Figures 4b–4d). When analyzing the air temperature metrics, Taero and Textrap
were similar between forests and croplands, although Taero was substantially lower for tall forest stands
(Figure 4b). Taero (Figure 4b) was observed to be 3.9± 2.1 for grasslands, 1.5± 1.6 for croplands, 1± 1.6 for short
forests, and notably, − 0.2 ± 0.9 for tall forests. Similarly, Textrap (Figure 4c) was 1.3 ± 0.8 for grasslands,

Figure 5. Impact of land cover and forest age on long‐term temperature trends. (a) Average trend in pooled annual Ta anomalies for 398 USHCN sites in the EUS. The
blue line denotes the 10‐year moving average. (b) Difference in Ta between reforested and non‐reforested USCHN sites within a 50 km radius. Red and blue lines depict
smoothed summer maximum and annual average temperatures, respectively. Negative values indicate cooler temperatures at the reforesting site than its neighboring
non‐reforesting site(s). (c) July temperature difference (Ts–Ta,Daymet) versus forest age, using data from 30,000 randomly selected MODIS pixels across the study area.
The blue line represents the Generalized Additive Model smooth function, while the surrounding white area depicts its 99% confidence interval. (d) Spatial moving
window correlation (5 × 5 window) between forest age and recent long‐term Ta trends (1970–2017). A negative correlation indicates older forests are associated with
greater cooling, and a positive correlation indicates younger forests are associated with greater cooling (inset).
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0.6± 0.84 for croplands, 0.6± 1 for short forests, and − 0.1± 1.8 for tall forests. Textrap results showed tall forests
to be 1.4°C cooler than grasslands, and short forests were 0.7°C cooler.

Despite the confounding influence of canopy effects on near‐surface Ta profiles, tower‐measured Ta also suggests
a cooling effect of forests, although differences across biomes were smaller (Figure 4d). The mean of the dif-
ference between Ts and tower‐measured Ta was − 0.5 ± 0.7 for grasslands, − 0.8 ± 0.4 for croplands, − 0.9 ± 0.6
for short forests, and − 1.5 ± 0.6 for tall forests. Throughout the growing season, the mean difference between the
tower‐derived Ts and the tower‐measured Ta was 1°C cooler for tall forests compared to grasslands, and 0.7°C
cooler for tall forests relative to croplands (Figure 4d).

Next, to provide an independent perspective on surface and air temperature coupling, we used high‐resolution
(30 m) Landsat Ts retrievals to evaluate the extent to which transitions in Ts at forest‐cropland boundaries
were smooth or abrupt (Figure 4e; Figure S6 in Supporting Information S1). A relatively smooth temperature
transition from cooler forests to warmer croplands was observed (Figure 4e) that extends over length scales of
several hundred meters.

3.3. Long‐TermMeteorological Observations and Signatures of Land‐Cover Change: Local and Regional
Historical Analysis

To evaluate the signatures of land‐cover change in long‐term meteorological observations, we compared long‐
term records of air temperature from weather station sites, estimates of forest age, and gridded air temperature
data (see methods Section 2.4.1). First, long‐term temperature trends from 398 USHCN sites in the study region
were examined. The examination showed that temperatures remained relatively stable throughout the 20th
century, with a decline in average temperatures in the late 1950s (Figure 5a). Next, we investigated the cooling
effect of regrowing forests by analyzing the difference between Ts and the reference Ta,Daymet as a function of
forest age. Results indicated that the cooling effect was strongest for forests around 20–40 years old, as the
difference reached its lowest point at that age (Figure 5c).

To further explore the cooling effect of reforestation, we compared 10‐year rolling means of Ta from historical
USHCN stations in sites predominantly surrounded by reforestation (“reforest”) and neighboring sites that did not
undergo land cover conversion (“non‐reforest”) within 50 km. In terms of average annual temperatures, reforested
sites were consistently cooler than their non‐reforesting counterparts throughout the 20th century (Figure 5b, blue
line). The results were more nuanced for maximum growing season temperatures. Sites with nearby reforestation
tended to be warmer in the early half of the 20th century and cooler in the latter half, and the magnitude of this
cooling effect increased throughout the study period. By the end of the 20th century, reforesting siteswere up to 1°C
cooler than their non‐reforesting neighbors in terms of maximum growing season air temperatures (Figure 5b, red
line).

Finally, to explore the relation between forest age and temperature trends, we explored spatial variation in the
correlation between decadal‐scale growing season Ta trends (from University of Delaware 0.5° monthly clima-
tologies) and forest age across the continental US (Figure 5d). A positive correlation coefficient indicates that
pixels dominated by younger forests (i.e., <100 years as of 2019) experienced less warming during this period
than pixels dominated by more mature stands (see inset to Figure 5d). This correlation coefficient was positive
across much of the study region on the annual timescale (63% of pixels; Figure 5d), and when considering
growing season temperature trends alone (Figure S10B in Supporting Information S1), consistent with the
expectation that reforesting areas experience less warming. However, there is substantial variability across the
study region, with negative relations between forest age and ∆Ta observed, including in the central Appalachians
and Ozarks.

4. Discussion
The study provides compelling evidence of the biophysical climate benefits of reforestation in the EUS, while
also establishing a clear relation between land‐cover changes and temperature shifts observed throughout the 20th
century. Taken together, these findings indicate reforestation has a cooling effect on surface and near‐surface air
temperature in the EUS, and likely contributed to the slower pace of warming in the region. Both ground‐ and
satellite‐based observations indicate that EUS forests cool the land surface by 1–2°C annually (Figure 3)
compared to nearby surfaces with short‐stature vegetation. During midday in the growing season, surface cooling

Earth's Future 10.1029/2023EF003663

BARNES ET AL. 13 of 22

 23284277, 2024, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

F003663, W
iley O

nline L
ibrary on [27/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



is 2–5°C (Figures 3c and 4a), and forests aged 25–50 years exhibit the strongest cooling effect (Figure 5c). The
surface cooling extends to the near‐surface air, with forests reducing midday growing‐season air temperature by
up to 1°C (Figures 4d and 5b). Historical weather station data and regional‐scale gridded long‐term air tem-
perature data analyses establish a link between reforestation and the observed lack of warming in the EUS
(Figure 5). Weather stations located near reforesting areas recorded temperatures that were 0.5–1.0°C cooler than
stations surrounded by land that experienced little change in forest cover. Overall, these results highlight the
substantial adaptation potential of reforestation as a nature‐based climate solution.

However, these findings may not be applicable across all temperate regions or for all strategies, such as affor-
estation. The implementation of NbCS must be undertaken with consideration to avoid unintended consequences
that could lead to net warming (Novick, Metzger, et al., 2022; Peng et al., 2014). For instance, while reforestation
in boreal regions may seem beneficial, changes in albedo and evaporation dynamics could lead to warming in the
long‐term (Liu et al., 2019; Randerson et al., 2006). Moreover, potential disturbances—such as climatic stressors,
wildfires, and insects—carry substantial implications for the success of NbCS. These disturbances could
compromise forest carbon storage (Anderegg et al., 2022, particularly in regions more susceptible to these risks
like the Western United States), even in regions such as the Eastern United States where these are historically less
prevalent. Although forests in the EUS are generally less prone to such disturbances compared to those in the
West (Barbero et al., 2015; Bentz et al., 2010), it is nonetheless important to recognize these risks when evaluating
region‐specific NbCS potential.

4.1. Assessing Land Cover Impacts on Surface and Near‐Surface Air Temperature

Assessing the direct consequence of land‐cover change on surface temperature is less ambiguous, given the
abundance of satellite observations of Ts and complementary measurements of surface energy fluxes from
ground‐based towers. We have known for some time that reforestation tends to increase Ts in the boreal zone
(Bright et al., 2017; Lee et al., 2011; Swann et al., 2010) and decreases Ts in the tropics (Bonan, 2008). In this
study of temperate ecosystems, we demonstrated that forests in mid‐latitude of the eastern US can contribute to a
Ts reduction of 2–5°C at midday during the growing season (Figures 3 and 4a). Furthermore, these reductions in
Ts can be achieved within approximately 20 years of forest regeneration (Figure 5c) and remain stable across
mature forest classes (Figure 4a). Our findings, combined with other recent work on the topic, contribute to a
growing consensus that the presence of forests tends to have a direct cooling effect on Ts across much of the
temperate zone.

Remote sensing data inherently favor clear‐sky conditions, introducing potential bias into the results presented in
Figures 3a and 3b. This bias, however, is mitigated considerably by conducting similar comparisons with flux
data (Figure 4a), which are not subject to these clear‐sky limitations. Another potential source of bias is associated
with the timing of the MODIS overpass. Satellite retrievals are obtained at approximately 1:30 p.m. local time,
which could be earlier than when Daymet would record the daily maximum air temperature, particularly in
summer. This mismatch might cause the difference between Ts and the Daymet Ta to be lower than it would be in
the absence of a temporal discrepancy. Our study, however, primarily focused on comparing the Ts–Ta difference
for forested and non‐forested areas. Consequently, even if the timing of the MODIS overpass does not align with
the peak daily temperatures estimated by Daymet, any small discrepancy would largely be removed when
analyzing their difference. Further supporting this point, we found differences in Ts–Ta between forest and non‐
forest flux sites (Figure 4a) of magnitudes similar magnitude to those from derived from the remote sensing data.
These complementary findings lend further credence to our comparative analysis between forested and non‐
forested areas, thereby strengthening our confidence in the overall results, despite the potential sources of bias.

Assessing the impact of land cover change on near‐surface air temperature is more challenging due to technical
and methodological limitations. Yet, understanding the potential of reforestation and other natural climate so-
lutions to confer climate adaptation benefits requires that we quantify land cover impacts on near‐surface air
temperature. Furthermore, for the surface cooling to extend beyond the stand scale and thus contribute to the
warming hole, changes in Ts must translate to changes in Ta. In turn, evaluating the impacts of land cover on near‐
surface air temperatures requires overcoming technical and methodological challenges, including data scarcity
and canopy structural effects that prevent straightforward comparisons of air temperature measured above
different ecosystems. We adopted several new or emerging approaches to overcome the technical and method-
ological challenges associated with evaluating Ta.
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First, we harnessed flux tower data to estimate metrics of Ta that are less sensitive to canopy effects. By relying on
proxies for near‐surface air temperature that are relatively insensitive to canopy structural effects (e.g., Taero and
Textrap), we demonstrate that, across much of the study region, the cooling effect of forests on Ts extends to the
near‐surface air temperature above the canopy (Figures 3c and 3d; Figure 4). Forest cover impacts on Ta are
smaller than impacts on Ts (∼1°C for midday growing season periods, Figures 3d and 4) but still consequential,
particularly compared to the magnitude of historic and predicted changes in Ta due to climate change.

Next, to provide an independent perspective on surface and air temperature coupling, we used high‐resolution
(30 m) Landsat Ts retrievals to evaluate the extent to which transitions in Ts at forest‐cropland boundaries
were smooth or abrupt. A smoother transition suggests that biophysical feedbacks on Ts are linked to Ta through
the formation of an internal boundary layer, assuming the thermal inertia of leaves is small. A relatively smooth
temperature transition from cooler forests to warmer croplands was observed (Figure 4e) that extends over length
scales typical of adjustment distances needed for the equilibration of the air temperature internal boundary layer.
Furthermore, the smooth transition of Ts across forest‐grassland boundaries implies coupling between Ts and Ta
that extends at least several hundred meters beyond the ecosystem boundary. This result helps to confirm previous
theoretical modeling (Hsieh & Katul, 2009; Li & Wang, 2019) and augments a similar exercise in the tropics
(Cohn et al., 2019) by documenting these processes at a large spatial scale over much of the EUS. Importantly, it is
over this distance that biophysical impacts on Ta are substantial enough to feedback on Ts. It is likely that
reforestation impacts on Ta extend further, but beyond a few hundred meters are not great enough to drive sig-
nificant changes in grassland Ts.

Our analyses have shown that forests in the EUS exert a cooling effect on both surface and air temperatures, and
that this effect can extend across ecosystem boundaries. Importantly, this cooling benefit is most pronounced
during midday summer periods (Figures 3c and 3d; Figure 5b), which are typically associated with high heat
stress and extreme events. These findings suggest that, in temperate zones, reforestation may provide the greatest
climate adaptation benefit precisely when it is most needed.

4.2. Linking Reforestation to the Observed Lack of Warming in the Eastern US

To establish a link between reforestation and the observed lack of warming in the EUS, we analyzed historical
weather station data to associate near‐surface air temperature records with land cover changes during the 20th
century. Additionally, we conducted a regional‐scale analysis to investigate the relationship between spatial
patterns of reforestation and temperature patterns in the EUS.

Overall, our analysis of long‐term Ta records from 398 USHCN weather stations is consistent with the general
understanding of 20th temperature trends in the EUS as it reveals no overall warming trend (Figures 1c and 5a).
We observed a sharp decrease in average temperatures in the 1950s, which corresponds with previous studies that
found an abrupt climactic regime shift in 1957–1958 in the EUS (Partridge et al., 2018; Rogers, 2013). The causes
of this abrupt, uniform cooling are likely multifaceted. The abrupt cooling could be related to changes in jet
stream position, specifically sharp decreases in the Meridional Circulation Index (MCI; Tosca et al., 2017).
However, the impact of decreases in the MCI is greater on winter temperatures, which decreased more uniformly
during the twentieth century than summer temperatures (Figure S11 in Supporting Information S1). Therefore,
focusing on summer temperature time‐series in addition to annual temperature time‐series can help to distinguish
the influence of the MCI from other mechanisms, including reforestation.

We investigated the signatures of reforestation in long‐term climate data by analyzing the difference in long‐
term Ta records between weather stations predominantly surrounded by reforestation and nearby (within 50 km)
weather stations that did not undergo land cover change (remained agriculture or forest) throughout the 20th
century. In the early 20th century, we found that sites with nearby reforestation tended to be warmer than sites
without reforestation in terms of maximum daily growing season temperatures (Figure 5b). This pattern is
consistent with expectations if these areas were sparsely vegetated at the time (Figure 1), likely being aban-
doned agricultural or marginal lands with limited vegetation. As a result, these areas would have experienced
lower rates of transpiration prior to reforestation, compared to their levels after reforestation. However, as the
20th century progressed, sites predominantly surrounded by reforestation became increasingly cool relative to
their non‐reforesting neighbors within 50 km. By the end of the 20th century, reforesting sites were up to 1°C
cooler than their non‐reforesting neighbors in terms of maximum growing season air temperatures (Figure 5b).
The magnitude of the cooling effect is consistent with the results from the tower air temperature comparisons
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(Figures 3c, 3d and 4), providing independent evidence of the impact of reforestation on near‐surface air
temperature.

Analysis of the forest cooling by age indicated that the cooling effect of regrowing forests takes about 20 years to
fully develop, with forests around 20–40 years old exhibiting the strongest cooling effect (Figure 5c). This time
frame is consistent with the time it takes for regenerating forests in the region to achieve levels of hydrological
function comparable to mature forests (Ford et al., 2011). To offer historical context, during the growing season—
when the cooling impact of regrowing forest is at its peak—reforesting sites were consistently cooler than nearby
non‐reforesting sites by the late 1950s (Figure 5b). This timeframe roughly corresponds to forests aged between
20 and 30 years, assuming the 1930s as a starting point due to widespread agricultural abandonment and federal
reforestation efforts during that decade. The gap between maximum growing‐season temperatures in forested
versus nearby non‐forested areas widened throughout the 20th century, supporting the idea that as forests grew,
the summer cooling effect increased (Figure 5b).

Regional‐scale analysis of gridded long‐term air temperature data provided an independent, yet complementary
approach to the weather station analyses. The analysis showed that younger forests were associated with lower
historic rates of warming across most of the study region (Figure 5d). This finding, combined with the weather
station analyses, suggests that reforestation had a cooling effect on near‐surface air temperature across a wide
swath of the EUS. Parsing the trends in long‐term Ta time series as a function of land cover and historic land‐cover
change (e.g., the results in Figure 5) captures both the influence of regional‐scale non‐local effects and the finer‐
scale direct effects. However, we note studies focusing on 21st‐century forest cover (e.g., Hansen et al., 2013)
found considerable forest turnover in the EUS since 2000. If these findings accurately reflect forest dynamics,
they could introduce complexities to the relationships presented in Figures 5d and 5c, which specifically explore
the impact of forest age. Our methodology, employing aggregated data and spatial moving window analysis, is
designed to mitigate the impact of these potential localized variations. Nonetheless, we recognize the potential for
biases in our results related to forest age, particularly if the actual average stand age is systematically under-
estimated. We estimate that the potential impact of such a discrepancy on the conclusions drawn from our forest‐
age related findings is likely minimal. Even a considerable reduction in stand age (10 years) across a substantial
portion (20%) of the study area would not alter the conclusions derived from Figures 5c and 5d (Figure S12 in
Supporting Information S1).

While uncertainties remain regarding the characterization of forest age and historical land cover, our results
support the expectation that 20th‐century EUS reforestation had a net cooling effect that extended well beyond the
surface and local stand‐scale. For weather stations located near to, but outside of, reforested areas, the effect
amounts to a suppression of Ta on the order of 0.5–1°C for the latter half of the 20th century.

4.3. Non‐Local Effects of Land‐Use Change

Amore holistic perspective on the efficacy of nature‐based climate solutions accounts for the possibility that local
(e.g., ecosystem‐scale) changes in land cover can initiate non‐local impacts over much broader scales (Swann
et al., 2012; Williams et al., 2021). For example, reforestation can lead to increased evapotranspiration, resulting
in increased cloud cover and precipitation (Cerasoli et al., 2021; Manoli et al., 2016) that extend across the
landscape. These effects would tend to amplify local cooling, particularly during the daytime. Localized land‐
cover changes can also cause shifts in atmospheric circulation, which can have continental or even global‐
scale consequences for temperature, precipitation, cloudiness, and other meteorological drivers (Pongratz
et al., 2010; Swann et al., 2012; Winckler et al., 2019). Earth system models have been the primary tool for
exploring these teleconnections, with many studies suggesting a dramatic role for non‐local processes to amplify
or counteract the local impacts of land‐cover change on surface and near‐surface temperature. However, results
from these modeling studies are sometimes contradictory, and the difference between model predictions and
observations can be large (Bonan, 2008; De Hertog et al., 2022). Notably, such discrepancies can include un-
derestimations of the biophysical climate impacts associated with the expansion of vegetation cover (Li
et al., 2020).

This study employs observational approaches to indirectly assess the non‐local effects of land‐cover change. We
investigate how surface temperature effects can extend to the air and be transported across the landscape,
providing a generalizable method to investigate these connections. Our approach includes exploring gradients in
surface temperature (Ts) across ecosystem boundaries, as shown in Figure 4, to uncover the potential local extent
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of such effects. This connection is crucial because long‐term records of air temperature, which are used to
delineate the warming hole, are made in open clearings. By uncovering how surface temperature effects extend to
the air, we can gain insight into how local changes in land cover may initiate non‐local impacts across much
broader scales. It is important to note that these observational approaches have many limitations, as they cannot
fully account for the possibility that non‐local effects of land‐use change within and outside the study region are
influencing long‐term temperature trends in the EUS.

For example, changes in agricultural management, such as agricultural intensification and increased irrigation
use, are known to have a local cooling effect (Mueller et al., 2016), and many areas of the EUS have experienced
these management shifts (Spangler et al., 2020). Changes in agricultural management that promote cooling could
obscure the influence of reforestation in the comparison of long‐term trends from forested and cropland eco-
systems (e.g., Figure 5). Thus, the results presented here can be considered conservative. It is also possible that
land‐use changes occurring well outside of the study region may be driving widespread trends in long‐term
temperature trends in the EUS via teleconnections (Swann et al., 2018), or that certain non‐local temperature
effects of reforestation or deforestation may be opposite in sign to the local effects (De Hertog et al., 2022;
Pongratz et al., 2021). These non‐local teleconnections are currently only possible to explore with modeling
studies that tend to rely on idealized experiments that force instantaneous and extreme changes in land cover
across broad regions. Evaluating all modes of historical land‐use change that might have affected climate in the
EUS would be computationally expensive (if not impossible) and would still be unlikely to resolve, with pre-
cision, the relatively small changes in Ts and Ta that are revealed by the observation‐driven approach taken here.

5. Conclusions
Various hypotheses have been proposed to explain the observed lack of 20th‐century warming in the eastern
United States (e.g., Meehl et al., 2012; Z. Pan et al., 2004; Partridge et al., 2018; Tosca et al., 2017). The work here
does not identify widespread reforestation as the sole factor causing the EUS warming hole or its trend, but
multiple independent data sources suggest it can be an important contributor to this lack of historic regional
warming. Beyond that, the study provides robust evidence of local biophysical climate benefits of reforestation in
the EUS. The strong and persistent increase in forest cover throughout the region in the 20th century contributed
to cooling, which is consistent with observed temperature changes. In addition, the findings demonstrate that
reforestation has a consistent cooling effect on both surface and air temperatures, especially during midsummer
periods when high temperatures can be most harmful. These findings emphasize the potential for reforestation to
provide local climate adaptation benefits in temperate regions such as the EUS, highlighting the importance of
biophysical co‐benefits of nature‐based climate solutions.
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Data Availability Statement
The AmeriFlux tower data utilized in this study are available from the AmeriFlux data portal (https://ameriflux.
lbl.gov/). The various remote sensing and meteorological network data used are detailed in the methods section
and can be accessed via the respective links and repositories mentioned therein. To ensure reproducibility and
facilitate access to our research data, intermediate data products, code, and transformed data products (i.e., those
derived from raw publicly available data) are publicly available in a Dryad repository (Barnes et al., 2024). The
repository is maintained under a CC0 1.0 Universal (CC0 1.0) Public Domain Dedication license.

1. Daymet (Thornton et al., 2016) [Dataset]
• Description: Daily surface weather data, including temperature, precipitation, and radiation.
• Availability: The Daymet data on which this article is based are available in Thornton et al. (2016).

2. Ameriflux data
• Description: Eddy covariance flux data and ancillary meteorological variables.
• Availability: The Ameriflux sites used in this article are all available from the AmeriFlux data portal.

https://ameriflux.lbl.gov/.
3. Eddy Covariance Data (Zhang et al., 2020)
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• Description: Site descriptions and details on eddy covariance data processing for the six paired flux sites
using the REddyProc processing tool (Wutzler et al., 2018).

• Availability: The data used in this study can be found in Zhang et al. (2020).
4. Temperature Extrapolation Model (Novick & Katul, 2020)

• Description: Results for temperature extrapolation into the first 10 m of the surface layer after conceptual
flattening of ecosystems.

• Availability: Details and code for the temperature extrapolation model can be found in Novick and
Katul (2020).

5. National Ecological Observatory Network (NEON) Towers (Metzger et al., 2019)
• Description: Towers installed and operated by NEON for ecological observations.
• Availability: Data from the NEON towers are available through Metzger et al. (2019). https://data.

neonscience.org/data‐products/DP4.00200.001.
6. AmeriFlux Biological, Ancillary Disturbance, and Metadata (BADM) Database

• Description: Data from most towers available in the BADM database.
• Availability: Data from the AmeriFlux towers can be accessed through the BADM database. https://

ameriflux.lbl.gov/data/badm/.
7. Moderate Imaging Resolution Spectroradiometer (MODIS; Wan et al., 2015) [Dataset]

• Description: MODIS data set for surface temperature (MYD11A1v6.1).
• Availability: The MODIS data set used in this study is available in Wan et al. (2015).

8. U.S. Geological Survey North American Land‐Cover Characteristics Data set (EROS, 2017) [Dataset]
• Description: Land‐cover characteristics data set.
• Availability: The land‐cover data set used in this study was provided by the U.S. Geological Survey's

North American Land‐Cover Characteristics project (EROS, 2017).
9. National Land Cover Database (NLCD) (Dewitz, 2019) [Dataset]

• Description: Land cover data set used to identify forest‐agriculture boundaries.
• Availability: The National Land Cover Database (NLCD) data set used in this study can be accessed

through Dewitz (2019).
10. Landsat Provisional Surface Temperature Product (Cook et al., 2014)

• Description: Landsat‐based surface temperature product.
• Availability: The Landsat Provisional Surface Temperature Product used in this study is described in

Cook et al. (2014) and can be accessed here: https://www.usgs.gov/landsat‐missions/landsat‐collection‐1‐
us‐analysis‐ready‐data.

11. FORE‐SCE (Sohl, 2018)
• Description: FOREcasting SCEnarios of Land‐use Change backcasting grids from the US Land Cover

Trends project.
• Availability: The FORE‐SCE grids used in this study are described in Sohl et al. (2007) and can be

accessed through Sohl, 2018.
12. United States Historical Climate Network (USHCN) Meteorological Stations

• Description: Meteorological station data for the United States.
• Availability: Data from the USHCNmeteorological stations are available through the respective network.

https://www.ncei.noaa.gov/products/land‐based‐station/us‐historical‐climatology‐network.
13. University of Delaware Air Temperature and Precipitation Data set (Willmott & Matsuura, 2015) [Dataset]

• Description: Monthly temperature timeseries with a spatial resolution of 0.5°.
• Availability: The University of Delaware Air Temperature and Precipitation Data set used in this study is

provided by Willmott and Matsuura (2015) through NOAA/OAR/ESRL PSD.
14. “greenbrown” R Package (Forkel & Wutzler, 2015) [Software]

• Description: R package used for season‐trend model estimation.
• Availability: The “greenbrown” R package can be accessed through Forkel and Wutzler (2015).

15. North American Carbon Program (NACP) Forest Age Maps (Y. Pan et al., 2012) [Dataset]
• Description: Forest age maps for the year 2006.
• Availability: The North American Carbon Program (NACP) forest age maps are available through Y. Pan

et al. (2012).
16. “SpatialEco” R Package (Evans, 2021) [Software]

• Description: R package for spatial ecological analysis.
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• Availability: The “SpatialEco” R package used in this study is provided by Evans (2021).
17. “raster” R Package (Hijmans, 2021) [Software].

• Description: R package with the “modal” function used in the analysis.
• Availability: The “raster” R package with function is available through Hijmans (2021).
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